PROBLEM 1. Consider the equation

$$\frac{dx}{dt} = rx + ax^2 - x^3,$$

where $-\infty < r < \infty$, $-\infty < a < \infty$ are parameters.

- (a) For each a, there is a bifurcation diagram x vs r. Sketch the qualitatively different bifurcation diagrams that can be obtained by varying a, i.e., draw bifurcation diagrams for a < 0, a = 0, and a > 0.
- **(b)** Summarize your results by plotting the regions in (r,a) parameter space that correspond to the qualitatively different classes of vector fields. Bifurcations occur on boundaries of these regions; identify the types of bifurcation that occur.

PROBLEM 2. Consider the system of equations

$$\frac{dx}{dt} = \lambda x - y - xr^2 + \lambda \frac{x^3}{r}$$

$$\frac{dy}{dt} = x + \lambda y - yr^2 + \lambda \frac{x^2y}{r}$$

where r is the polar radius, i.e., $r^2=x^2+y^2$. Show that this system has a stable limit cycle when $\lambda>0$.

PROBLEM 3. Let

$$\mathcal{E}[y(x)] = \int_0^1 \left[\frac{d^2 y}{dx^2} \right]^2 dx.$$

Derive the equation for y(x) which extremizes \mathcal{E} subject to the constraint

$$\int_0^1 [y(x)]^2 \, dx = 1$$

and the boundary conditions y(0)=y(1)=y'(0)=y'(1)=0, where $y'=\frac{dy}{dx}$. Find the functions which extremize \mathcal{E} . What would be considered the natural boundary conditions for this problem?

PROBLEM 4. Find the solution $G(x,\xi)$ (the Green's Function) to the problem

$$\frac{d^2G}{dx^2} - G = \delta(x - \xi)$$

with $G(0,\xi) = G(L,\xi) = 0$.

Use the Green's function to compute the solution of

$$\frac{d^2y}{dx^2} - y = H(x)$$

with y(0) = y(L) = 0, and

$$H(x) = \begin{cases} 0 & 0 \le x \le \frac{L}{2} \\ 1 & \frac{L}{2} < x \le L \end{cases}$$

PROBLEM 5. A simple harmonic oscillator is subject to weak nonlinear damping proportional to the square of its velocity, and its displacement $y(t;\epsilon)$ satisfies the nondimensionalized initial value problem

$$\frac{d^2y}{dt^2} + \epsilon \frac{dy}{dt} \left| \frac{dy}{dt} \right| + y = 0, \qquad y(0; \epsilon) = 1, \quad \frac{dy}{dt}(0; \epsilon) = 0.$$

Use the method of multiple scales to find a leading order approximation for $y(t;\epsilon)$ as $\epsilon \to 0^+$, valid on times $t=O(\epsilon^{-1})$. Hint. The function $\sin t |\sin t|$ has the Fourier expansion

$$\sin t |\sin t| = \sum_{n=1}^{\infty} b_n \sin nt, \qquad b_1 = \frac{8}{3\pi}.$$

PROBLEM 6. Use the method of matched asymptotic expansions to find a leading order composite approximation for the solution $y(x;\epsilon)$ of the following boundary value problem on $0 \le x \le 1$:

$$\epsilon y'' + 2y' + y^3 = 0, \qquad y(0; \epsilon) = 0, \quad y(1; \epsilon) = \frac{1}{2}.$$