Fall 2012: PhD Applied Math Preliminary Exam

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
2. Use separate sheets for the solution of each problem.

Problem 1. Consider the one-dimensional discrete dynamical system

$$
x_{n+1}=\mu e^{x_{n}}, \quad n=0,1,2, \ldots
$$

where $x_{n} \in \mathbb{R}$ and μ is a real parameter.
(a) Describe qualitatively how the the fixed points of the system change as μ increases from $-\infty$ to ∞ and determine their stability.
(b) What types of bifurcation occur when there is a change in stability of the fixed points?

Problem 2. Consider the 3×3 system of ODEs

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}, \quad \dot{x}_{3}=1-\left(x_{1}^{2}+x_{2}^{2}\right)
$$

(a) Show that trajectories of the system in phase space $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\right\}$ lie on the cylinders

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}=c^{2} \tag{1}
\end{equation*}
$$

where $c \geq 0$ is a constant.
(b) Sketch the trajectories on the cylinder (1) for: (i) $c=0$; (ii) $0<c<1$; (iii) $c=1$; (iv) $c>1$.
(c) Does the system have any equilibria? Does it have periodic solutions? Why doesn't your answer contradict the Poincaré- Bendixson theorem?

Problem 3. Compute the Green's function for the boundary value problem

$$
\begin{aligned}
& u^{\prime \prime}+u=f(x) \quad 0<x<1, \\
& u^{\prime}(0)=0, \quad u(1)=0,
\end{aligned}
$$

and write out the Green's function representation of the solution.

Problem 4. Suppose $u(x)$ satisfies the following boundary value problem on $[-1,1]$

$$
\begin{array}{ll}
L u=f(x) & -1<x<1 \\
u(-1)=0, & u(1)=0 \tag{2}
\end{array}
$$

where $f:[-1,1] \rightarrow \mathbb{R}$ is a given smooth function and

$$
L u=u^{\prime \prime}+x u^{\prime}+3 u .
$$

(a) Find the formal adjoint L^{*} of L and the adjoint boundary conditions.
(b) Verify that $v(x)=1-x^{2}$ is a solution of the homogeneous adjoint problem and derive a necessary condition that $f(x)$ must satisfy if (2) is solvable.

Problem 5. (a) Suppose that $0<\epsilon \ll 1$ is a small positive parameter. Use the method of matched asymptotic expansions to construct leading order approximations

$$
x=x_{0}+O(\epsilon), \quad y=y_{0}+O(\epsilon) \quad \text { as } \epsilon \rightarrow 0^{+}
$$

of the solution $x(t ; \epsilon), y(t ; \epsilon)$ of the initial value problem

$$
\dot{x}=-x y, \quad \epsilon \dot{y}=x^{2}-y, \quad x(0)=x_{0}, \quad y(0)=y_{0}
$$

that are valid for times of the order ϵ and times of the order 1 .
(b) Sketch the phase plane of this system. How do solutions behave as $t \rightarrow+\infty$?

Problem 6. (a) Find all separable solutions $u(x, t)=F(x) G(t)$ of the wave equation on the interval $0<x<1$ subject to homogeneous Dirichlet boundary conditions:

$$
\begin{array}{lr}
u_{t t}-u_{x x}=0 & 0<x<1 \\
u(0, t)=0, & u(1, t)=0
\end{array}
$$

(b) Consider a Dirichlet problem for the wave equation on a rectangle of sides length 1 and $T>0$,

$$
\begin{array}{lrl}
u_{t t}-u_{x x}=0 & & 0<x<1, \quad 0<t<T, \\
u(x, 0)=f(x), & u(x, T)=g(x) & 0 \leq x \leq 1, \\
u(0, t)=h(t), & u(1, t)=k(t) & 0 \leq t \leq T
\end{array}
$$

where $f, g:[0,1] \rightarrow \mathbb{R}$ and $h, k:[0, T] \rightarrow \mathbb{R}$ are given functions. Suppose that this problem has a solution. Show that solutions are unique if T is irrational and non-unique if T is rational.

