Graduate Group in Applied Mathematics University of California, Davis

Preliminary Exam

(3 January 2002)

Problem 1. (5 points) Let V be a metric space with the property that every sequence $(x_k)_{k\geq 1}$ such that

$$d\left(x^{k}, x^{l}\right) < 3^{-k}$$
 for $l \ge k \ge 1$

is convergent. Prove that V is complete.

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a smooth, bounded function, and define

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) e^{-y^2/2} dy$$

where $-\infty < x < \infty$ and $t \ge 0$.

a) (5 points) Show that u(x,t) is a solution of the initial value problem

$$u_t = u_{xx} - xu_x$$
 $-\infty < x < \infty, \quad t > 0$
 $u(x,0) = f(x)$ $-\infty < x < \infty.$

b) (5 points) What is the asymptotic behavior of u(x,t) as $t\to\infty$?

Problem 3. Let \mathcal{H} denote a Hilbert space with inner product (\cdot, \cdot) . For any two vectors $f, g \in \mathcal{H}$, define the operator $f \otimes g$ by

$$(f \otimes g) v = f (g, v), v \in \mathcal{H}$$

Let $\{\varphi_k\}_{k=0,1,2,...}$ be an orthornormal basis for \mathcal{H} . For each positive integer N define the operator K_N by

$$K_N = \sum_{k=0}^{N-1} \varphi_k \otimes \varphi_k$$

- a) (5 points) What is the dimension of the range of K_N ?
- b) (5 points) Prove that K_N is a projection operator.

Problem 4. Let $\{f_n\}$ denote a sequence of vectors in the Hilbert space \mathcal{H} .

- a) (5 points) Define the notion of strong convergence of this sequence to a vector $f \in \mathcal{H}$.
- **b)** (5 points) Define the notion of weak convergence of this sequence to a vector $f \in \mathcal{H}$.
- c) (5 points) Give an example to show that a sequence can converge weakly but not strongly. Be sure to show that your sequence converges weakly but does not converge strongly.
- d) (5 points) Let A be a bounded operator on \mathcal{H} and $\{f_n\}$ a sequence of vectors that converge strongly to f. Prove that $\{Af_n\}$ converges strongly to Af.

Problem 5. Let A denote a bounded operator on the Hilbert space \mathcal{H} .

- a) (5 points) Define the adjoint operator A^* .
- **b)** (5 points) What does it mean for the operator A to be self-adjoint?
- c) (5 points) Prove that if λ is any eigenvalue of a self-adjoint operator A, then λ is a real number.
- d) (5 points) Let A be self-adjoint and λ a complex number with nonzero imaginary part. Define the resolvent operator R_{λ} . What can you say about R_{λ} ?

Problem 6. Consider a non-linear autonomous system of ODE's

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 .

- a) (5 points) Define a *rest point* of this system, and explain in what sense it corresponds to a solution.
- **b)** (5 points) Give the precise definition of *stable* and *asymptotically stable* rest point.

Problem 7. The orbit of a planet in general relativity follows a trajectory

of the ODE

$$\ddot{u} = -P'(u)$$
 ,

where $u = r^{-1}$, r = distance from the planet to the sun (assumed to be point masses), and

$$P(u) = -Cu(u - u_2)(u - u_3) \quad .$$

Here C > 0 is a constant, and $0 < u_2 < u_3 < \infty$, are critical values of u.

- a) (5 points) Define the energy and sketch the phase portrait, noting the character of all rest points.
- **b)** (5 points) Show which values of the energy correspond to bounded periodic orbits.
- c) (5 points) Use the phase portrait to argue that any orbit sufficiently close to the sun, with sufficiently small energy, will fall into the sun (evidence of a black hole).

Problem 8. Consider the linear system

$$\dot{\mathbf{x}} = A\mathbf{x}$$
 ,

where

$$A = \begin{pmatrix} -2 & 0 \\ 1 & -2 \end{pmatrix} \quad .$$

- a) (5 points) Find $\exp A$, and use it to give a formula for the solution set.
- **b)** (5 points) Prove that

$$\lim_{t \to +\infty} \mathbf{x}(t) = 0$$

for any solution $\mathbf{x}(t)$.