Graduate Group in Applied Mathematics University of California, Davis
 Preliminary Exam

September 20, 2011

Instructions:

- This exam has 3 pages (8 problems) and is closed book.
- The first 6 problems cover Analysis and the last 2 problems cover ODEs.
- All problems are worth 10 points.
- Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- Use separate sheets for the solution of each problem.

Problem 1: (10 points)
Let (X, d) be a metric space and let $\left(x_{n}\right)$ be a sequence in X. For the purpose of this problem adopt the following definition: $x \in X$ is called a cluster point of $\left(x_{n}\right)$ iff there exists a subsequence $\left(x_{n_{k}}\right)_{k \geq 0}$ such that $\lim _{k} x_{n_{k}}=x$.
(a) Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of distinct points in X. Construct a sequence $\left(x_{n}\right)_{n \geq 0}$ in X such that for all $k=0,1,2, \ldots, a_{k}$ is a cluster point of $\left(x_{n}\right)$.
(b) Can a sequence $\left(x_{n}\right)$ in a metric space have an uncountable number of cluster points? Prove your answer. (If you answer yes, give an example with proof. If you answer no, prove that such a sequence cannot exists). You may use without proof that \mathbb{Q} is countable and \mathbb{R} is uncountable.

Problem 2: (10 points)
Let X be a real Banach space and X^{*} its Banach space dual. For any bounded linear operator $T \in \mathscr{B}(X)$, and $\phi \in X^{*}$, define the functional $T^{*} \phi$ by

$$
T^{*} \phi(x)=\phi(T x), \quad \text { for all } x \in X .
$$

(a) Prove that T^{*} is a bounded operator on X^{*} with $\left\|T^{*}\right\| \leq\|T\|$.
(b) Suppose $0 \neq \lambda \in \mathbb{R}$ is an eigenvalue of T. Prove that λ is also an eigenvalue of T^{*}. (Hint 1: first prove the result for $\lambda=1$. Hint 2: For $\phi \in X^{*}$, consider the sequence of Cesàro means $\psi_{N}=N^{-1} \sum_{n=1}^{N} \phi_{n}$, of the sequence ϕ_{n} defined by $\phi_{n}(x)=\phi\left(T^{n} x\right)$.)

Problem 3: (10 points)
Let \mathscr{H} be a complex Hilbert space and denote by $\mathscr{B}(\mathscr{H})$ the Banach space of all bounded linear transformations (operators) of \mathscr{H} considered with the operator norm.
(a) What does it mean for $A \in \mathscr{B}(\mathscr{H})$ to be compact? Give a definition of compactness of an operator A in terms of properties of the image of bounded sets, e.g., the set $\{A x \mid x \in \mathscr{H},\|x\| \leq 1\}$.
(b) Suppose \mathscr{H} is separable and let $\left\{e_{n}\right\}_{n \geq 0}$ be an orthonormal basis of \mathscr{H}. For $n \geq 0$, let P_{n} denote the orthogonal projection onto the subspace spanned by e_{0}, \ldots, e_{n}. Prove that $A \in \mathscr{B}(\mathscr{H})$ is compact iff the sequence $\left(P_{n} A\right)_{n \geq 0}$ converges to A in norm.

Problem 4: (10 points)
Let $\Omega \subset \mathbb{R}^{n}$ be open, bounded, and smooth. Suppose that $\left\{f_{j}\right\}_{j=1}^{\infty} \subset L^{2}(\Omega)$ and $f_{j} \rightarrow g_{1}$ weakly in $L^{2}(\Omega)$ and that $f_{j}(x) \rightarrow g_{2}(x)$ a.e. in Ω. Show that $g_{1}=g_{2}$ a.e. (Hint: Use Egoroff's theorem which states that given our assumptions, for all $\epsilon>0$, there exists $E \subset \Omega$ such that $\lambda(E)<\epsilon$ and $f_{j} \rightarrow g_{2}$ uniformly on E^{c}.)

Problem 5: (10 points)
Let $u(x)=(1+|\log x|)^{-1}$. Prove that $u \in W^{1,1}(0,1), u(0)=0$, but $\frac{u}{x} \notin L^{1}(0,1)$.

Problem 6: (10 points)
Let $H=\left\{f \in L^{2}(0,2 \pi): \int_{0}^{2 \pi} f(x) \mathrm{d} x=0\right\}$. We define the operator Λ as follows:

$$
(\Lambda f)(x)=\int_{0}^{x} f(y) \mathrm{d} y .
$$

(a) Prove that $\Lambda: H \rightarrow L^{2}(0,2 \pi)$ is continuous.
(b) Use the Fourier series to show that the following estimate holds:

$$
\|\Lambda f\|_{H_{0}^{1}(0,2 \pi)} \leq C\|f\|_{L^{2}(0,2 \pi)}
$$

where C denotes a constant which depends only on the domain $(0,2 \pi)$. (Recall that $\left.\|u\|_{H_{0}^{1}(0,2 \pi)}^{2}=\int_{0}^{2 \pi}\left|\frac{\mathrm{~d} u}{\mathrm{~d} x}(x)\right|^{2} \mathrm{~d} x.\right)$

Problem 7: (10 points)
Consider the system

$$
\dot{x}=\mu x+y+\tan x \quad \dot{y}=x-y .
$$

(a) Show that a bifurcation occurs at the origin $(x, y)=(0,0)$, and determine the critical value $\mu=\mu_{c}$ at which the bifurcation occurs.
(b) Determine the type of bifurcation that occurs at $\mu=\mu_{c}$. Do this (i) analytically and (ii) graphically (sketch the appropriate phase portraits for μ slightly less than; equal to; and slightly greater than μ_{c}).

Problem 8: (10 points)
Consider the differential equation

$$
\ddot{x}+x-x^{3}=0,
$$

with the initial condition $x(0)=\epsilon, \dot{x}(0)=0$, where $\epsilon \ll 1$. Use "two-timing" and perturbation theory to approximate the frequency of oscillation to order ϵ^{2}.
(a) Make a change of variables so that the differential equation is in the form $\ddot{z}+z+$ $\epsilon h(z, \dot{z})=0$, i.e., in a form where ϵ appears naturally in the equation as a perturbation parameter.
(b) Rewrite the equation assuming two times scales, a fast time $\tau=t$ and a slow one $T=\epsilon \tau$, and the solution form $z(t, \epsilon)=z_{0}(\tau, T)+\epsilon z_{1}(\tau, T)+O\left(\epsilon^{2}\right)$.
(c) Show that the order 0 (i.e., $O(1)$) solution takes the form

$$
z_{0}(\tau, T)=r(T) \cos (\tau+\phi(T)) .
$$

(d) Use the order 1 (i.e., $O(\epsilon)$) equation to determine the frequency of oscillation to order ϵ^{2}. (Hint: The order 1 (i.e., $O(\epsilon)$) equation contains resonant terms, which would cause the solution to grow without bound as $t \rightarrow \infty$. A solution that remains bounded for large τ is obtained by setting the coefficients of the resonant terms to zero. This yields equations that can be used to find the order ϵ^{2} correction for the frequency of the oscillation. Note: Be sure to look for "hidden" resonance terms. It may be helpful to use the trig identity $\cos ^{3}(\theta)=\frac{3}{4} \cos (\theta)+\frac{1}{4} \cos (3 \theta)$.)

