
This collection of 15 problems is intended to help you review and prepare for the pre-
liminary exam on Numerical Analysis. The exam covers material in MAT 128A (Numerical
Analysis), MAT 128B (Numerical Analysis in Solutions of Equations), and MAT 128C (Nu-
merical Analysis in Differential Equations). Some problems are harder and longer than what
you will find on the exam. Try to write the solutions as you would in the exam: Write out
all details when solving each problem. Be organized and use the notation appropriately.
Initially try to solve the problems without any assistance.

The prelim exam will be 3 hours long and have 6 problems. In what follows we present
in consecutive order six problems from MAT 128A, six problems from MAT 128B, and 6
problems from MAT 128C.
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PART I: Problems from Numerical Analysis

1. Let be a floating point system with base/radix β. Let x̂ and ŷ be floating point numbers
such that

1

β
≤ ŷ < 1 ≤ x̂ < β.

Show that x̂− ŷ is a floating point number.
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2. Consider the approximation

f ′(x) ≈ −3f(x) + 4f(x+ h)− f(x+ 2h)

2h
.

(a) Using Taylor’s Theorem, derive the error term for the above approximation.

(b) What is the round-off error in the above finite difference? (You can ignore the
round-off error in computing h, x, x+ h, and x+ 2h.

(c) Using the above finite difference approximation for f ′, find a finite difference
approximation for f ′′.
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3. Let Pn denote the space of all polynomials of degree at most n. Further, let x0, x1, . . . , xn ∈
[0, 1] be distinct. Define

`i(x) =
n∏
j=0
j 6=i

x− xj
xi − xj

, i = 0, 1, . . . , n,

and Pn : C([0, 1])→ Pn by

[Pnf ](x) =
n∑
i=0

f(xi)`i(x).

(a) Show that p(x) = [Pnf ](x) is the unique element of Pn that satisfies

p(xi) = f(xi), i = 0, 1, . . . , n.

(b) Show that Pn is a linear operator on C([0, 1]).

(c) Define

‖Pn‖∞ = sup
f∈C([0,1])

‖Pnf‖∞
‖f‖∞

.

Show that
‖Pn‖∞ ≤ Λn,

where

Λn = max
x∈[0,1]

n∑
i=0

|`i(x)|.

(d) Show that for any f ∈ C([0, 1])

‖f − Pnf‖∞ ≤ (1 + Λn) min
p∗∈Pn

‖f − p∗‖∞.
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4. Let w ∈ C([−1, 1]) satisfy w(x) > 0 for all x ∈ [−1, 1]. Suppose that P0, P1, P2, . . . is
a family of polynomials such that Pn is of degree exactly n for all n ≥ 0 and∫ 1

−1
Pi(x)Pj(x)w(x) dx = 0, i 6= j,

for all i, j ∈ {0, 1, . . .}.

(a) Show that there exist sequences of numbers {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 such that

Pn+1(x) = αnxPn(x) + βnPn(x) + γnPn−1(x), n ≥ 1.

(b) Let N ≥ 2. Let {xi}Ni=1 denote the roots of PN . Suppose {wi}Ni=1 are chosen such
that

N∑
i=1

wip(xi) =

∫ 1

−1
p(x)w(x) dx,

where p is any polynomial of degree N − 1 or lower.

Show that
N∑
i=1

wiq(xi) =

∫ 1

−1
q(x)w(x) dx,

where q is any polynomial of degree 2N − 1 or lower.
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5. Simpson’s rule for computing the integral

I =

∫ b

a

f(x) dx

is to approximate I as

I ≈ Ih =
h

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
where h = b− a.

(a) For smooth functions, what is the approximation error of Simpson’s rule with
respect to the interval width h?

(b) What is the form of one step of Richardson extrapolation of Ih? What approxi-
mation error to I is obtained in the result?
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PART II: Problems from Numerical Analysis in Solutions of Equations

1. Let S ∈ Cn×n be skew-Hermitian, i.e., S∗ = −S.

(a) Show that if λ is an eigenvalue of S then Reλ = 0.

(b) Show that I − S is nonsingular.

(c) Show that Q = (I − S)−1(I + S) is unitary.
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2. Sometimes in numerical computations, the näıve heuristic for the accuracy of the com-
puted solution based on condition numbers is too pessimistic. In this problem we will
examine perhaps the most famous example of this phenomenon.

(a) Let x ∈ R. Let x̂ = x(1 + δ1) where |δ1| ≤ u and 0 < u� 1. Find δ2 such that

1

x̂
=

1

x
(1 + δ2).

Furthermore, show that |δ2| ≤ 2u as long as u < 1
2
.

(b) Let D ∈ Rn×n be a diagonal matrix with all diagonal elements positive. Let κ2(D)
denote the matrix condition number of D in the 2-norm. Compute κ2(D).

(c) Now, suppose you store D on a computer. Let D̂ ∈ Rn×n be the rounded version
of D with entries given by

D̂ij = Dij(1 + ηij), |ηij| ≤ u, i, j = 1, 2, . . . , n.

Let x, x̂, b ∈ Rn satisfy Dx = b and D̂x̂ = b. Based on your answer to (b), what
does our condition number heuristic say about how large we should expect

‖x− x̂‖2
‖x‖2

to be?

(d) Now, suppose you compute x̂ using the formula

x̂i =
bi

D̂ii

, i = 1, 2, . . . , n.

Show that if u < 1
2
, then

‖x− x̂‖2
‖x‖2

≤ 2u.

(e) To make this tangible let n = 100 and suppose Dii = 10−(i−1) for i = 1, 2, . . . , 100.
For this specific example work out the heuristic in (c) and the estimate in (d) when
IEEE double precision floating point arithmetic is used.

(f) How can you reconcile the discrepancy between (c) and (d)?
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3. Let A ∈ Rn×n be a symmetric matrix with eigenpairs (λi, qi) for i = 1, 2, . . . , n. Further
assume that q1, q2, . . . , qn is an orthonormal basis for Rn and |λ1| > |λ2| ≥ . . . ≥ |λn|.
Define

P = q1q
T
1 .

(a) Suppose x ∈ Rn satisfies Px 6= 0. Define

y(k) =
Akx

‖Akx‖2
, k = 0, 1, 2, . . . .

Show that

‖y(k) − Py(k)‖2 = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
.

(b) Show that

|λ1 − (y(k))TAy(k)| = O

(∣∣∣∣λ2λ1
∣∣∣∣2k
)
.

(c) Is it guaranteed that
‖y(k+1) − y(k)‖2 → 0

as k →∞? Explain your answer.

4. Let A ∈ Rm×n where m > n, and assume that rank(A) = n. Let b ∈ Rm. Consider the
least-squares problem

x̂ = arg min
x∈Rn

‖Ax− b‖2. (1)

(a) Let A be as above, and let O ∈ Rm×m be an orthogonal matrix. Show that x̂
satisfies (1) if and only if x̂ satifies

x̂ = arg min
x∈Rn

‖OAx−Ob‖2.

(b) Let S ∈ Rm×n be diagonal (i.e., Sij 6= 0 only if i = j), and suppose Sii 6= 0 for all
i = 1, 2, . . . , n. Find the solution to the least-squares problem

ŷ = arg min
y∈Rn

‖Sy − b‖2.

(c) Let A be as above and suppose P ∈ Rn×n is an invertible matrix. Suppose ẑ
satisfies

ẑ = arg min
z∈Rn

‖APz − b‖2.

Find the solution to (1) in terms of ẑ.

(d) Suppose we have a factorization A = UΣV T where U ∈ Rm×m and V ∈ Rn×n

are orthogonal, and Σ ∈ Rm×n with entries satisfying Σij = 0 if i 6= j for i =
1, 2, . . . ,m and j = 1, 2, . . . , n. Using (a)–(c), show how this factorization can be
used to solve the least-squares problem.
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5. The first stage in most symmetric eigenvalue computations is to first tridiagonalize the
matrix.

(a) Consider the symmetrix 3× 3 matrix given by

A =

a1 b c
b a2 d
c d a3

 .
Find an explicit formula for an orthogonal matrix Q ∈ Rn×n such that

QAQT =

ã1 b̃ 0

b̃ ã2 d̃

0 d̃ ã3

 ,
where the tilde variables denote arbitrary real numbers.

(b) We can use induction to show that this approach can be extended to any arbitrary
symmetric n× n matrix. For an arbitrary n× n matrix, we assume that we can
tridiagonalize the leading n − 1 × n − 1 submatrix. Thus, we may assume that
A ∈ Rn×n is of the form

A =



a1 b2
b2 a2 b3

b3 a3
. . .

. . . . . . bn−1 d
bn−1 an−1 c
d c an


,

where all omitted entries are zero. Find an explicit formula for an orthogonal
matrix Q ∈ Rn×n such that QAQT is tridiagonal.
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PART III: Problems from Numerical Analysis in Differential Equations

1. Consider the scalar initial value problem (IVP)

y′ = f(t, y(t)), t ∈ [0, 1]

y(0) = y0.

Let N be a positive integer, let h = 1/N , and tj = jh for j = 0, 1, 2, . . . , N .

Integration of the ODE on each interval yields

y(tj+1) = y(tj) +

∫ tj+1

tj

f(t, y(t)) dt.

The s-step Adams–Bashforth method is a linear multistep method that discretizes the
above integral by replacing f with its polynomial interpolant at the points tj, tj−1, . . . , tj−s+1.

(a) Derive the 2-step Adams–Bashsforth method.

(b) Find the rate at which the local truncation error goes to 0 for the 2-step Adams–
Bashforth method as h→ 0 when f is smooth.

(c) Show that the 2-step Adams–Bashforth method is zero stable.

(d) At each time step, the 2-step Adams–Bashforth method requires information
about previous two time steps. However, we only have a single initial condition.
Explain how you would overcome this obstacle in practice.
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2. Consider the scalar initial value problem (IVP)

y′ = f(y), t ∈ [0, 1]

y(0) = y0.

Let N be a positive integer, let h = 1/N , and tj = jh for j = 0, 1, 2, . . . , N . Consider
the linear multistep method:

yn+2 − 3yn+1 + 2yn = −hf(yn), n = 0, 1, . . . , N − 2.

(a) Find the rate at which the local truncation error goes to zero for this method as
h→ 0 when f is smooth.

(b) Determine whether this linear multistep method is zero stable.

(c) Do you expect the method to converge as h→ 0? Explain your answer.
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3. Consider the scalar initial value problem (IVP)

y′ = f(t, y(t))

y(0) = y0.

Let h > 0 and tn = nh for j = 0, 1, 2, . . ..

Consider the linear multistep method

yn+1 + byn−1 + ayn−2 = hf(tn, yn), n = 0, 1, 2, . . .

where a and b are constants.

(a) For a certain (unique) choice of a and b, this method is consistent. Find these
values of a and b and verify that the order of accuracy is 1.

(b) Although the method is consistent for the choice of a and b from (a), the method is
not zero stable. Show this and describe quantitatively what the unstable solutions
will look like for small h.
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4. Consider the scalar initial value problem (IVP)

y′ = f(t, y(t)), t ∈ [0, 1]

y(0) = y0.

Let N be a positive integer, let h = 1/N , and tj = jh for j = 0, 1, 2, . . . , N .

Given α > 0, consider the linear two-step method

yn+2 − αyn =
h

3
[f(tn+2, yn+2) + 4f(tn+1, yn+1) + f(tn, yn)] .

(a) Determine the set of all α such that the method is zero stable.

(b) Find α such that the order of accuracy is as high as possible.

(c) Is the method convergent for the value of α in (b)?
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5. Consider the scalar initial value problem (IVP)

y′ = f(t, y(t)),

y(0) = y0.

Let h > 0 and tn = nh for j = 0, 1, 2, . . .

Consider the one-step method

yn+1 = yn + αhf(tn, yn) + βhf(tn + γh, yn + γhf(tn, yn)),

where α, β, and γ are real parameters.

(a) Show that the method is consistent if and only if α + β = 1.

(b) show that the order of the method cannot exceed 2.

(c) In the above IVP, suppose that f(t, y) = −λy and y0 = 1, where λ > 0. Show
that the sequence y0, y1, y2, . . . is bounded if and only if h ≤ 2

λ
.
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