Graduate Group in Applied Mathematics
 University of California, Davis
 Preliminary Exam

(3 January 2003)

This exam has 2 numbered pages and is closed book. The Analysis portion of this exam is Problems 1-6. The ODE portion is Problems 7-9.

Problem 1. Let $f(x)$ be a real-valued function from $L^{2}\left(R^{1}\right)$ and

$$
\alpha=\int_{-\infty}^{+\infty} f(x) \exp \left(-x^{2}\right) d x, \quad \beta=\int_{-\infty}^{+\infty} f(x) x \exp \left(-x^{2}\right) d x .
$$

a) (5 points) Prove that $\alpha^{2}<\pi \int_{-\infty}^{+\infty} f^{2}(x) d x$.
b) (5 points) Prove that $\alpha^{2}+2 \beta^{2}<\pi \int_{-\infty}^{+\infty} f^{2}(x) d x$.

Problem 2. Calculate the Fourier coefficients of the functions $f(x)$ and $g(x)$ in $L^{2}(0,2 \pi)$ where
a) (5 points) $f(x)=\cos ^{6}(x)$,
b) (5 points) $g(x)=x-\pi$.

Problem 3.

a) (5 points) Prove or disprove that R^{n} equipped with the usual Euclidean norm is separable (i.e. it has a countable dense subset). Does the answer depend on the particular choice of norm in R^{n} ?
b) (5 points) Prove that $l^{\infty}(\mathbb{Z})$ with the usual sup norm is not a separable space.

Problem 4. (10 points) Find all non-negative integers n and m such that $x^{n} \frac{d^{m} \delta(x)}{d x^{m}}$ is identically zero, where $\delta(x)$ is the delta function.

Problem 5. Consider the Hilbert space $L^{2}[-1,1]$.
a) (5 points) Find the orthogonal complement of the space of all polynomials. Hint: Use the Stone-Weierstrass theorem.
b) (5 points) Find the orthogonal complement of the space of polynomials in x^{2}.

Problem 6. (15 points) Consider the space of all polynomials on $[0,1]$ vanishing at the origin with the sup norm. Prove that the space is not complete and find its completion.

Problem 7. Consider the 2-d system

$$
x^{\prime}=x, \quad y^{\prime}=-y+x^{2} .
$$

a) (5 points) Show that the system has a saddle point at $(0,0)$ and its stable manifold is the y-axis.
b) (5 points) Let (x, y) be a point on the unstable manifold and close to (0,0). Write the $y=u(x)$ and assume

$$
u(x)=\sum_{k \geq 1} c_{k} x^{k}
$$

Determine the coefficients c_{k} (and thus $u(x)$) by substituting the expression into the equations.
c) (5 points) Check that your analytical result produces a curve with the same shape as the stable manifold shown in the figure.

Problem 8. (10 points) Show that $x^{\prime}=y, y^{\prime}=-x-x^{3}$ has a fixed point at the origin that is a center (i.e. the Jacobian has purely imaginary eigenvalues). Are the trajectories in a small neighborhood of the origin closed (i.e. periodic orbits)? Prove your answer.

Problem 9. (10 points) Sketch an argument for the existence of a periodic orbit for the system

$$
x^{\prime \prime}+x+\epsilon\left(x^{2}-1\right) x^{\prime}=0
$$

with a small positive parameter ϵ.

