Applied Math Prelim Exam (Fall 2014)

Instructions.

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State all results and theorems that you are using.
- 2. Use separate sheets for the solution of each problem.

1. Consider the mechanical system pictured below. A particle attached to a spring, of rest length 1, slides along a rigid rod. The rigid rod is situated a distance h and at an angle θ from the surface to which the spring is attached.

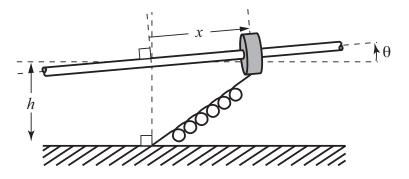


FIGURE 1. A mechanical system.

Assuming that damping is large, the differential equation that governs the particle's position is of the form

$$\frac{dx}{dt} = \left(\frac{1}{\sqrt{h^2 + 2xh\sin(\theta) + x^2}} - 1\right) \left(x + h\sin(\theta)\right) \,.$$

There are two parameters in the equation, θ and h. Sketch a bifurcation diagram in h for the case where $\theta = 0$. Then, sketch a bifurcation diagram in θ for the case where $h = 1 + \varepsilon$ (where ε is an arbitrarily small, but non-zero, positive number). Finally, sketch a stability diagram in h and θ , and find an equation for the boundaries between the phases. In all of your answers, assume that $h \ge 0$ and $-\pi/2 < \theta < \pi/2$.

2. A generic conservative, one degree-of-freedom mechanical system obeys the following differential equations

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -g(x_1)$

Suppose that there is a local, isolated minimum of the potential energy function $V(x_1) = \int_0^{x_1} g(x_1)$ at x_1^* . Show that this minimum at x_1^* corresponds to a stable equilibrium at $x_1 = x_1^*$, $x_2 = 0$. You may assume that g is C^1 .

Note. Recall that a fixed point \bar{x} is asymptotically stable if all nearby trajectories converge to \bar{x} as time $t \to \infty$; it is Lyapanov stable if nearby trajectories remain close to \bar{x} for all time. In this problem, by "stability," we refer to either type.

3. Find the path between (x_1, y_1) and (x_2, y_2) which a particle sliding without friction and under constant gravitational acceleration will traverse in the shortest time. You may assume that the particle is released from (x_1, y_1) at rest and hence conservation of energy implies that

$$\frac{1}{2}mv^2 + mgy = mgy_1.$$

4. Determine the Green's function associated with the BVP

$$x^{2}y'' - xy' - 3y = x - 3, \ y(1) = 0, y(2) = 0,$$

and give a solution to the BVP.

5. Find the leading order approximations in the limits $x \to \infty$ and $x \to -\infty$ of

$$\int_0^\pi e^{x\sin(t)} dt \, .$$

6. For $0 < \epsilon \ll 1$ and $k(\epsilon x) > 0$, $\forall x \in \mathbb{R}$, with $k(\epsilon x) \sim \mathcal{O}(1)$, consider the following two second order ODEs:

$$\frac{d}{dx} \left[\frac{1}{k(\epsilon x)^2} \frac{dh_1}{dx} \right] + h_1 = 0 \tag{1}$$

$$\frac{1}{k(\epsilon x)^2} \frac{d^2 h_2}{dx^2} + h_2 = 0.$$
⁽²⁾

Equation (1) describes the amplitude $h_1(x)$ of a wave in a medium with varying wave speed, while equation (2) describes the amplitude $h_2(x)$ of a harmonic oscillator with varying frequency.

Compute the WKB approximation (up to $\mathcal{O}(\epsilon)$, i.e., two terms in the asymptotic expansion) for both equations (1) and (2). Furthermore, assuming that

$$\lim_{x \to -\infty} k \to k_{-} \quad \text{and} \quad \lim_{x \to \infty} k \to k_{+} \,,$$

and that

$$\lim_{x \to -\infty} |h_1(x)|^2 = 1 \text{ and } \lim_{x \to -\infty} |h_2(x)|^2 = 1,$$

determine the limits

$$\lim_{x \to \infty} |h_1(x)|^2 \text{ and } \lim_{x \to \infty} |h_2(x)|^2.$$