Graduate Group in Applied Mathematics University of California, Davis

Preliminary Exam

March 29, 2012

Instructions:

- This exam has 3 pages (8 problems) and is closed book.
- The first 6 problems cover Analysis and the last 2 problems cover ODEs.
- All problems are worth 10 points.
- Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- Use separate sheets for the solution of each problem.

Problem 1: (10 points)

For $u \in L^1(0,\infty)$, consider the integral

$$v(x) = \int_0^\infty \frac{u(y)}{x + y} \, \mathrm{d}y$$

defined for x > 0. Show that v(x) is infinitely differentiable away from the origin. Prove that $v' \in L^1(\epsilon, \infty)$ for any $\epsilon > 0$. Explain what happens in the limit as $\epsilon \to 0$.

Problem 2: (10 points)

Let $X \subset L^2(0, 2\pi)$ be the set of all functions u(x) such that

$$u(x) = \lim_{K \to \infty} \sum_{k=-K}^{K} a_k e^{ikx} \text{ in } L^2\text{-norm, with } |a_k| \le (1+|k|)^{-1}.$$

Prove that *X* is compact in $L^2(0, 2\pi)$.

Problem 3: (10 points)

For $\epsilon > 0$, we set

$$\eta_{\epsilon}(x) = \frac{1}{\pi} \sin\left(\frac{\epsilon \pi x}{x^2 + \epsilon^2}\right) \frac{\epsilon}{x^2 + \epsilon^2},$$

and define the convolution for $u \in L^2(\mathbb{R})$:

$$\eta_{\epsilon} * u(x) = \int_{\mathbb{R}} \eta_{\epsilon}(x - y) u(y) dy.$$

For $\epsilon > 0$, prove that $\sqrt{\epsilon}(\eta_{\epsilon} * u)(x)$ is bounded as a function of x and ϵ , and that $\eta_{\epsilon} * u$ converges strongly in $L^2(\mathbb{R})$ as $\epsilon \to 0$. What is the limit?

Problem 4: (10 points)

Let $u_n:[0,1]\to[0,\infty)$ denote a sequence of measurable functions satisfying

$$\sup_{n} \int_{0}^{1} u_n(x) \log(2 + u_n(x)) \, \mathrm{d}x < \infty.$$

If $u_n(x) \to u(x)$ almost everywhere, show that $u \in L^1(0,1)$ and that $u_n \to u$ in L^1 strongly. (**Hint.** One possible strategy is Egoroff's Theorem.)

Problem 5: (10 points)

Let $u:[0,1] \to \mathbb{R}$ be absolutely continuous, satisfy u(0) = 0, and

$$\int_0^1 |u'(x)|^2 \, \mathrm{d}x < \infty.$$

Prove that

$$\lim_{x\to 0^+}\frac{u(x)}{r^{\frac{1}{2}}}$$

exists and determine the value of this limit.

Problem 6: (10 points)

Consider on \mathbb{R}^2 the distribution defined by the locally integrable function

$$E(x,t) = \begin{cases} \frac{1}{2} & \text{if } t - |x| > 0 \\ 0 & \text{if } t - |x| < 0 \end{cases}.$$

Compute the distributional derivative

$$\frac{\partial^2 E}{\partial t^2} - \frac{\partial^2 E}{\partial x^2}.$$

Problem 7: (10 points)

Consider

$$\dot{x} = y + ax(1 - 2b - x^2 - y^2)$$
 $\dot{y} = -x + ay(1 - x^2 - y^2)$

with $0 < a \le 1$, $0 \le b < \frac{1}{2}$; prove that there is at least one limit cycle and calculate the period T(a,b) (*i.e.*, write it as an integral).

Problem 8: (10 points)

Consider the system

$$\dot{x} = y - 2x \qquad \dot{y} = \mu + x^2 - y .$$

- (a) Sketch the nullclines of the system for different values of μ in order to find and classify the bifurcation that occurs at $\mu = \mu_c$.
- (b) Classify the fixed points and sketch the phase portrait for μ slightly smaller than μ_c .
- (c) For which values of μ the system admits a stable spiral?