## Fall 2006: PhD Applied Math Preliminary Exam

## **Instructions:**

- (1) Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- (2) Use separate sheets for the solution of each problem.

**Problem 1.** Let C([0,1]) be the Banach space of continuous real-valued functions on [0,1], with the norm  $||f||_{\infty} = \sup_{x} |f(x)|$ . Let  $k:[0,1] \times [0,1] \to \mathbb{R}$  be a given continuous function. Let  $T_k:C([0,1]) \to C([0,1])$  be the linear operator given by  $T_k(f)(x) = \int_0^1 k(x,y)f(y)\,dy$ .

- (a) Show that  $T_k$  is a bounded operator.
- (b) Find an expression for  $||T_k||$  in terms of k.
- (c) What is  $||T_k||$  if  $k(x, y) = x^2y^3$ ?

## **Problem 2.** Let X be a metric space.

- (a) Define X is sequentially compact.
- (b) Define X is a complete metric space.
- (c) Prove that a sequentially compact metric space X is complete.
- (d) Let  $B = \{x : ||x||_2 \le 1\}$  be the unit ball in  $\ell^2(\mathbb{N})$ . Show that B is not sequentially compact.

**Problem 3.** Give an example of a Banach space X and a sequence  $(x_n)$  of elements in X such that  $\sum_{n=1}^{\infty} x_n$  converges unconditionally (converges regardless of order), but does not converge absolutely  $(\sum_{n=1}^{\infty} |x_n|$  does not converge). Prove this.

**Problem 4.** Let  $f \in L^2(\mathbb{T})$ , and let  $(\hat{f}_n)_{n \in \mathbb{Z}}$  be the Fourier coefficient sequence of f; here,  $\mathbb{T} := \{ z \in \mathbb{C} : |z| = 1 \}$ . If  $(\hat{f}_n) \in \ell^1(\mathbb{Z})$ , does it follow that f is continuous? (In other words, is there a continuous function that is equivalent to f in  $L^2(\mathbb{T})$ ?) Prove your assertion.

**Problem 5.** Find all solutions T of the equation  $x^{2006}T = 0$  in the space of tempered distributions  $S^*(\mathbb{R}^1)$ .

**Problem 6.** In which of the following cases is the operator  $A = i\frac{d}{dx}$  acting on  $L^2([0,1])$  symmetric, essentially self-adjoint, self-adjoint? Justify your answers.

- (a)  $D_A = C^1[0, 1]$ (the space of continuously differentiable complex-valued functions on [0, 1])
- (b)  $D_A = \{ f \in C^1[0,1] : f(0) = f(1) \}$

(c) 
$$D_A = \{ f \in C^1[0,1] : f(0) = f(1) = 0 \}$$

**Problem 7.** Consider the system

$$\dot{x} = -y + axe^{x^2 + y^2}$$

$$\dot{y} = x + aye^{x^2 + y^2}$$

near the fixed point (0,0), where a is a parameter.

- (a) Classify the stability of the fixed point (0,0) in its linearized system.
- (b) Classify the stability of the origin in the original nonlinear system. (Hint: Express the system in polar coordinates, and recall that  $\dot{\theta} = \frac{x\dot{y} y\dot{x}}{r^2}$ .)

Problem 8. Show that the system

$$\dot{x} = y 
\dot{y} = -x + y \left(4 - x^2 - 4y^2\right)$$

has at least one closed orbit in the annulus

$$1 \le x^2 + y^2 \le 4.$$