Graduate Group in Applied Mathematics University of California, Davis

Preliminary Exam

September 21, 2010

Instructions:

- This exam has 4 pages (8 problems) and is closed book.
- The first 6 problems cover Analysis and the last 2 problems cover ODEs.
- Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- Use separate sheets for the solution of each problem.

Problem 1: (10 points)

Let f(x, y) denote a C^1 function on \mathbb{R}^2 . Suppose that

$$f(0,0) = 0.$$

Prove that there exist two functions, A(x, y) and B(x, y), both continuous on \mathbb{R}^2 such that

$$f(x, y) = xA(x, y) + yB(x, y) \quad \forall (x, y) \in \mathbb{R}^2$$

(**Hint**: Consider the function g(t) = f(tx, ty) and express f(x, y) in terms of g via the fundamental theorem of calculus.)

Problem 2: (10 points)

The Fourier transform \mathcal{F} of a distribution is defined via the duality relation

$$\langle \mathcal{F} f, \phi \rangle = \langle f, \mathcal{F}^* \phi \rangle$$

for all $\phi \in C_0^\infty(\mathbb{R})$, the smooth compactly-supported test functions on \mathbb{R} , where

$$\mathscr{F}^*\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\xi x} \phi(\xi) d\xi.$$

Explicitly compute $\mathcal{F}f$ for the function

$$f(x) = \left\{ \begin{array}{ll} x, & x > 0 \\ 0, & x \le 0 \end{array} \right.$$

Problem 3: (10 points)

Let $\{P_n(x)\}_{n=1}^{\infty}$ denote a sequence of polynomials on $\mathbb R$ such that

$$P_n \to 0$$
 uniformly on \mathbb{R} as $n \to \infty$.

Prove that, for n sufficiently large, all P_n are constant polynomials.

Problem 4: (10 points)

For $g \in L^1(\mathbb{R}^3)$, the convolution operator G is defined on $L^2(\mathbb{R}^3)$ by

$$Gf(x) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int_{\mathbb{R}^3} g(x-y) f(y) \, \mathrm{d}y, \quad f \in L^2(\mathbb{R}^3).$$

Prove that the operator *G* with

$$g(x) = \frac{1}{4\pi} \frac{e^{-|x|}}{|x|}, \quad x \in \mathbb{R}^3,$$

is a bounded operator on $L^2(\mathbb{R}^3)$, and the operator norm $\|G\|_{op} \leq 1$.

Problem 5: (10 points)

Consider the map which associates to each sequence $\{x_n : n \in \mathbb{N}, x_n \in \mathbb{R}\}$ the sequence, $\{(F(\{x_n\}))_m : m \in \mathbb{N}, (F(\{x_n\}))_m \in \mathbb{R}\}, \text{ defined as follows:}$

$$\left\{F(\left\{x_{n}\right\})\right\}_{m} := \frac{x_{m}}{m} \quad \text{for} \quad m = 1, 2, \dots$$

- 1. Determine (with proof) the values of $p \in [1,\infty]$ for which the map $F: l^p \to l^1$ is well-defined and continuous.
- 2. Next, determine the values of $q \in [1, \infty]$ for which the map $F: l^q \to l^2$ is well-defined and continuous.

Note for $1 \le p < \infty$, l^p denotes the space of sequences $\{x_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$, while l^{∞} denotes the space of sequences $\{x_n\}_{n=1}^{\infty}$ such that $\sup_{n \in \mathbb{N}} |x_n| < \infty$.

Problem 6: (10 points)

For each of the following, determine if the statement is true (always) or false (not always true). If true, give a brief proof, e.g., by citing a relevant theorem; if false, give a counterexample.

Let \mathbb{H} denote a separable Hilbert space and (x_n) a sequence of \mathbb{H} .

- (a) If (x_n) is weakly convergent then it is strongly convergent.
- (b) If (x_n) is strongly convergent then it is bounded.
- (c) If (x_n) is weakly convergent then it is bounded.
- (d) If (x_n) is bounded, there exists a strongly convergent subsequence of (x_n) .
- (e) If (x_n) is bounded, there exists a weakly convergent subsequence of (x_n) .
- (f) If (x_n) is weakly convergent and T is a bounded linear operator from \mathbb{H} to \mathbb{R}^d , for some d, then $T(x_n)$ converges in \mathbb{R}^d .

Problem 7: (10 points)

Consider the first order ordinary differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \beta + \alpha x - x^3 = f(x) ,$$

with $\alpha, \beta \in \mathbb{R}$.

- (a) What conditions on f(x) and f'(x) must be satisfied simultaneously at bifurcation points? *Briefly* explain your answers.
- (b) Use these conditions to find the curves of bifurcation points in α vs. β parameter space? Sketch the corresponding curves in the α vs. β plane.
- (c) Sketch the following bifurcation diagrams. Indicate the stability of the fixed points on the diagrams and classify the bifurcations that occurs. A detailed analytical treatment of the system is not required, but some justification (e.g., graphical arguments) of your answers is required.
 - (i) Use α as the bifurcation parameter and hold β constant at $\beta = 0$.
 - (ii) Use α as the bifurcation parameter and hold β constant with $\beta > 0$.
 - (iii) Use β as the bifurcation parameter and hold α constant with $\alpha > 0$.

Problem 8: (10 points)

Consider the system of ordinary differential equations in polar coordinates

$$\frac{\mathrm{d}r}{\mathrm{d}t} = r(1 - r^2)(4 - r^2), \quad r \ge 0$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 2 - r^2.$$

Sketch the phase-portrait. Label all fixed points and limit cycles, and indicate their stability.