Graduate Group in Applied Mathematics University of California, Davis

Preliminary Exam

(September 27, 2001)

Problem 1. (10 pts)

State the Riesz Representation Theorem for Hilbert spaces.

Problem 2. (10 pts)

Let T denote a linear operator on the Hilbert space \mathcal{H} . What does it mean for T to be bounded? Give an example of a bounded operator on $\mathcal{H} = L^2(-\infty, \infty)$ and give an example of an unbounded (linear) operator on the same space.

Problem 3. (10 pts)

Define a sequence of functions $p_n \in C([-1,1])$ by

$$p_{n+1}(x) = \frac{1}{2} [p_n^2(x) + 1 - x^2]$$
 $n = 0, 1, 2, ...,$
 $p_0(x) = 1.$

Show that (p_n) is a monotone decreasing sequence of nonnegative polynomials. State Dini's theorem, and deduce that (p_n) converges uniformly to the function $f:[-1,1] \to \mathbb{R}$ given by

$$f(x) = 1 - |x|.$$

Problem 4. (5 pts)

Let X be a metric space with the property that every sequence (x_n) such that

$$d(x^m, x^n) < 2^{-m}$$
 for $n \ge m$

is convergent. Prove that X is complete.

Problem 5. (15 pts)

- (a) (5 pts) Let T denote a self-adjoint and compact (sometimes called completely continuous) operator on the Hilbert space \mathcal{H} . (T need not be bounded.) State the spectral theorem as it applies to the operator T. Be sure to define all your symbols. (Think of this as a small essay.)
- (b) (5 pts) Let $K: L^2([0,1]) \to L^2([0,1])$ be the integral operator defined by

$$Ku(x) = \int_0^1 k(x, y)u(y) \, dy, \qquad k(x, y) = \min(x, y).$$

Is this operator K self-adjoint? Is K also compact? Explain why or why not. (c) (5 pts) Compute the eigenvalues of K defined as above. Show that K is a positive operator.

Problem 6. (15 pts)

(a) (5 pts) You may assume as given that the oscillator wave functions,

$$\varphi_k(x) = \frac{1}{\sqrt{2^k k! \sqrt{\pi}}} \exp(-x^2/2) H_k(x), \ k = 0, 1, 2, \dots,$$

 $(H_k(x))$ are the Hermite polynomials) form a complete orthonormal system of the Hilbert space $L^2(-\infty,\infty)$. Explain why the identity

$$2 = \sum_{k=0}^{\infty} \left(\int_{-1}^{1} \varphi_k(x) \, dx \right)^2$$

must be satisfied. (Hint: The solution does not require the computation of difficult integrals!)

(b) (5 pts) For what values of $\varepsilon \in \mathbb{R}$ are the sequences

$$f = \left\{ \frac{1}{n^{\varepsilon}} \right\}_{n=1}^{\infty}$$

elements of the Hilbert space ℓ^2 ?

(c) (5 pts) For what values of $\varepsilon \in \mathbb{R}$ are the functions

$$f(x) = \begin{cases} 0 & : \quad x = 0 \\ 1/x^{\varepsilon} & : \quad 0 < x \le 1 \end{cases}$$

elements of the Hilbert space $L^2([0,1])$? If you change the value of f at x=0, can this change your answer? Explain why.

Problem 7. (15 pts)

(a) (5 pts) Define the potential energy and total energy for the system

$$x'' = -x^3 - x^2 + x + 1 \qquad (*)$$

- (b) (5 pts) Plot the potential energy, being careful with the max/min points.
- (c) (5 pts) Use the graph in (b) to construct a phase portrait for solutions of (*). Justify your diagram.

Problem 8. (20 pts)

Consider the system

$$x' = -x - xy^2$$

$$y' = -x^2y$$

- (a) (10 pts) Linearize the system about rest point (0,0), and determine the stability of this rest point for the linearized system.
- **(b)** (10 pts) Prove that the rest point (0,0) is *stable* for this nonlinear system.