Applied Mathematics Preliminary Exam (June 17th, 2025)

First name :	Student ID :
Last name :	Additional pages :

Instructions:

- 1. Unless indicated, all problems are worth 10 points.
- 2. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 3. Use the front and back of each page to write the solution of each problem.
- 4. If you need extra pages, please <u>do not</u> use the same sheet for different problems.
- 5. Write your name and the problem number in each additional page you use.

PROBLEM 1.

Consider the following model for a chemical reaction

$$\frac{dc}{dt} = -rc + V\frac{c}{c+K} + I,$$

where c in the concentration of substance C in μM , t is time in sec, and r, V, and K are positive parameters with units sec^{-1} , $\mu M/sec$, and μM , respectively.

(a) Show that the model can be written in the dimensionless form

$$\frac{dx}{d\tau} = -\alpha x + \frac{x}{x+1} + \beta$$

for suitably defined dimensionless variable x and τ , and dimensionless parameters α and β . Verify the α and β are dimensionless.

- (b) For the dimensionless model with x > -1, $\alpha > 0$, and $\beta = 0$,
 - (i) Find the steady states and determine their stabilities.
- (ii) Sketch the bifurcation diagram using α as the bifurcation parameter (i.e., x vs α). Indicate the stability of the steady states on the diagram. At what values of α and x does a bifurcation occur? Classify the bifurcation.
- (iii) Sketch the phase portraits the three qualitatively different cases.

(c) Now consider the general case for the dimensionless mode. Derive set of algebraic equation for the curves of bifurcations in α , β -parameter space. (DO NOT SOLVE THE EQUATIONS.)

PROBLEM 2.

Consider the system

$$\frac{dx}{dt} = x - y - x^3$$
$$\frac{dy}{dt} = x + y - y^3$$

Show that the system has a nontrivial stable periodic solution.

PROBLEM 3.

Consider the following inhomogeneous regular Sturm-Liouville system on the unit interval $\left[0,1\right]\!\!:$

$$f'' = g$$

 $f(0) = 0 = f'(1)$

(a) (7 pts) Find the *Green's function* of this system.

(b) (3 pts) Suppose $g(x) = \sin(\pi x/2)$ Then, find the solution of the above system using the Green's function.

PROBLEM 4.

Consider a planar curve $y = y(x) \ge 0$, with y(0) = y(1) = 0, and rotate this curve about the *x*-axis to form a solid. Find the curve that *maximizes* the volume of such a solid under the constraint that its surface area is A where $0 < A < \pi$. Hint: The surface area of such a solid can be written as $\int_0^1 2\pi y \sqrt{1 + (y')^2} dx$.

PROBLEM 5.

Find the leading asymptotic solution for

$$\epsilon u'' + 2u' + u = 0, \quad u(0) = a, \quad u(1) = b, \quad \epsilon \ll 1,$$

where a and b are constants.

PROBLEM 6.

Find the leading asymptotic on the time scale $t=O(\epsilon^{-1})$ as $\epsilon\to 0$ for the nonlinear oscillator

 $\ddot{u} + u + \epsilon (u^2 - 1)\dot{u} = 0, \quad u(0) = a, \quad \dot{u}(0) = b, \quad \epsilon \ll 1$