Numerical Analysis Preliminary Exam (June 18th, 2025)

First name :	Student ID :
Last name :	Additional pages :

Instructions:

- 1. All problems are worth 10 points.
- 2. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 3. USe the front and back of each page to write the solution of each problem.
- 4. If you need extra pages, please <u>do not</u> use the same sheet for different problems.
- 5. Write your name and problem number on each additional page you use.

PROBLEM 1. Let $f(x) = x^2$, $x_0 = -1$, and $x_1 = 0$.

- (a) Find the Lagrange interpolation polynomial of degree 1 using x_0 and x_1 .
- (b) Recall the following theorem:

Theorem. Suppose x_0, x_1, \ldots, x_n are distinct numbers in the interval [a, b]and $f \in C^{n+1}([a, b])$. Then, for each $x \in [a, b]$, there exists $\xi(x) \in (a, b)$ such that

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x - x_i),$$

where P(x) is the Lagrange interpolating polynomial to f at the points x_0, x_1, \ldots, x_n .

Use this theorem to find an upper bound for the approximation error of the polynomial interpolation in (a) for $x \in [-1,0]$. We note that this upper bound need not be tight. Can you find a tight upper bound for $x \in [-1,0]$?

(c) Find the quadratic Lagrange polynomial approximation to f(x) using the interpolation points $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$. What is the approximation error in this case and why?

PROBLEM 2.

Let the two point quadrature formula on the interval [-1, 1] use the quadrature nodes $x_1 = -\alpha$ and $x_2 = \alpha$, where $\alpha \in (0, 1]$:

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx w_1 f(-\alpha) + w_2 f(\alpha).$$

- (a) The formula is required to be exact whenever f is a polynomial of degree 1. Show that $w_1 = w_2 = 1$, independent of the value of α .
- (b) Show that there is one particular value of α for which the formula is exact also for all polynomials of degree 2. Find this α .
- (c) Show that for the value of α in (b), the formula is also exact for all polynomials of degree 3.

PROBLEM 3. Let $T \in \mathbb{R}^{n \times n}$ be tridiagonal:

$$T = \begin{bmatrix} a_1 & b_2 & & \\ c_2 & a_2 & b_3 & & \\ & c_3 & a_3 & \ddots & \\ & & \ddots & \ddots & b_n \\ & & & c_n & a_n \end{bmatrix}$$

- (a) Suppose that the entries of T are such that $|a_1| > |b_2|$, $|a_n| > |c_n|$, and $|a_i| > |c_i| + |b_{i+1}|$ for i = 2, 3, ..., n 1. Show that T is invertible.
- (b) Under the assumption on the entries in (a), show that T has an LU factorization. In other words, T = LU where L is lower triangular and U is upper triangular.
- (c) Show that the LU factorization in (b) may be computed in O(n) operations.
- (d) Suppose you have factored T = LU as in the above step. Find an algorithm that takes as input $b \in \mathbb{R}^n$ and outputs the solution to Tx = b in O(n) operations.

PROBLEM 4. For any $v \in \mathbb{R}^n$ such that $||v||_2 = 1$, define $H_v = I - 2vv^T$.

- (a) Show that H_v is symmetric for any v.
- (b) Show that H_v is orthogonal for any v.
- (c) Let $x \in \mathbb{R}^n$. Find a vector v with $\|v\|_2 = 1$ such that

$$H_v x = H \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

for some $\alpha \in \mathbb{R}$. What must $|\alpha|$ be equal to?

PROBLEM 5. Consider the scalar initial value problem (IVP)

$$y' = f(t, y(t)), \quad t \in [0, 1]$$

 $y(0) = y_0.$

Let N be a positive integer, let h = 1/N, and $t_j = jh$ for j = 0, 1, 2, ..., N.

The leapfrog/midpoint method is a multistep method with time stepping specified by

$$y_{j+1} = y_{j-1} + 2hf(t_j, y_j), \quad j = 1, 2, \dots, N-1.$$

- (a) Find the rate at which the local truncation error goes to zero for the leapfrog method as $h \to 0$ when f is smooth.
- (b) Show that the leapfrog method is zero stable.
- (c) Find the region of absolute stability for the leapfrog method.

PROBLEM 6. Consider the initial value problem (IVP)

$$y' = y^{1/5}$$

 $y(0) = 0.$

(a) Show that

$$y(x) = \left(\frac{4x}{5}\right)^{5/4}$$

solves the IVP

- (b) Show that the forward Euler method fails to approximate the solution to the IVP. Justify your answer.
- (c) Now consider approximating the solution to the same initial value problem with the backward Euler method. Show that there is a solution of the form $y_n = (c_n h)^{5/4}$, for $n \ge 0$, with

$$c_0 = 0$$

$$c_1 = 1$$

$$c_n > 1, \quad \text{ for all } n \ge 2.$$