
Numerical Analysis Preliminary Exam
(June 18th, 2025)
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Instructions:

1. All problems are worth 10 points.

2. Explain your answers clearly. Unclear answers will not receive credit.
State results and theorems you are using.

3. USe the front and back of each page to write the solution of each problem.

4. If you need extra pages, please do not use the same sheet for different problems.

5. Write your name and problem number on each additional page you use.



PROBLEM 1. Let f(x) = x2, x0 = −1, and x1 = 0.

(a) Find the Lagrange interpolation polynomial of degree 1 using x0 and x1.

(b) Recall the following theorem:

Theorem. Suppose x0, x1, . . . , xn are distinct numbers in the interval [a, b]
and f ∈ Cn+1([a, b]). Then, for each x ∈ [a, b], there exists ξ(x) ∈ (a, b)
such that

f(x) = P (x) +
f (n+1)(ξ(x))

(n+ 1)!

n∏
i=0

(x− xi),

where P (x) is the Lagrange interpolating polynomial to f at the points
x0, x1, . . . , xn.
Use this theorem to find an upper bound for the approximation error of the
polynomial interpolation in (a) for x ∈ [−1, 0]. We note that this upper
bound need not be tight. Can you find a tight upper bound for x ∈ [−1, 0]?

(c) Find the quadratic Lagrange polynomial approximation to f(x) using the in-
terpolation points x0 = −1, x1 = 0, and x2 = 1. What is the approximation
error in this case and why?



PROBLEM 2.
Let the two point quadrature formula on the interval [−1, 1] use the quadrature

nodes x1 = −α and x2 = α, where α ∈ (0, 1]:∫ 1

−1
f(x) dx ≈ w1f(−α) + w2f(α).

(a) The formula is required to be exact whenever f is a polynomial of degree 1.
Show that w1 = w2 = 1, independent of the value of α.

(b) Show that there is one particular value of α for which the formula is exact
also for all polynomials of degree 2. Find this α.

(c) Show that for the value of α in (b), the formula is also exact for all polyno-
mials of degree 3.



PROBLEM 3. Let T ∈ Rn×n be tridiagonal:

T =


a1 b2
c2 a2 b3

c3 a3
. . .

. . . . . . bn
cn an

 .

(a) Suppose that the entries of T are such that |a1| > |b2|, |an| > |cn|, and
|ai| > |ci|+ |bi+1| for i = 2, 3, . . . , n− 1. Show that T is invertible.

(b) Under the assumption on the entries in (a), show that T has an LU factor-
ization. In other words, T = LU where L is lower triangular and U is upper
triangular.

(c) Show that the LU factorization in (b) may be computed in O(n) operations.

(d) Suppose you have factored T = LU as in the above step. Find an algorithm
that takes as input b ∈ Rn and outputs the solution to Tx = b in O(n)
operations.



PROBLEM 4. For any v ∈ Rn such that ‖v‖2 = 1, define Hv = I − 2vvT .

(a) Show that Hv is symmetric for any v.

(b) Show that Hv is orthogonal for any v.

(c) Let x ∈ Rn. Find a vector v with ‖v‖2 = 1 such that

Hvx = H


x1
x2
...
xn

 =


α
0
...
0

 ,
for some α ∈ R. What must |α| be equal to?



PROBLEM 5. Consider the scalar initial value problem (IVP)

y′ = f(t, y(t)), t ∈ [0, 1]

y(0) = y0.

Let N be a positive integer, let h = 1/N , and tj = jh for j = 0, 1, 2, . . . , N .
The leapfrog/midpoint method is a multistep method with time stepping spec-

ified by
yj+1 = yj−1 + 2hf(tj, yj), j = 1, 2, . . . , N − 1.

(a) Find the rate at which the local truncation error goes to zero for the leapfrog
method as h→ 0 when f is smooth.

(b) Show that the leapfrog method is zero stable.

(c) Find the region of absolute stability for the leapfrog method.



PROBLEM 6. Consider the initial value problem (IVP)

y′ = y1/5

y(0) = 0.

(a) Show that

y(x) =

(
4x

5

)5/4

solves the IVP

(b) Show that the forward Euler method fails to approximate the solution to the
IVP. Justify your answer.

(c) Now consider approximating the solution to the same initial value problem
with the backward Euler method. Show that there is a solution of the form
yn = (cnh)

5/4, for n ≥ 0, with

c0 = 0

c1 = 1

cn > 1, for all n ≥ 2.


