Graduate Group in Applied Mathematics University of California, Davis

Preliminary Exam

September 22, 2009

Instructions:

- This exam has 3 pages (8 problems) and is closed book.
- The first 6 problems cover Analysis and the last 2 problems cover ODEs.
- Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- Use separate sheets for the solution of each problem.

Problem 1: (10 points)

For $\epsilon > 0$, let η_{ϵ} denote the family of *standard* mollifiers on \mathbb{R}^2 . Given $u \in L^2(\mathbb{R}^2)$, define the functions

$$u_{\epsilon} = \eta_{\epsilon} * u \text{ in } \mathbb{R}^2.$$

Prove that

$$\epsilon \|Du_{\epsilon}\|_{L^2(\mathbb{R}^2)} \leq \|u\|_{L^2(\mathbb{R}^2)}$$
,

where the constant C depends on the mollifying function, but not on u.

Problem 2: (10 points)

Let $B(0,1) \subset \mathbb{R}^3$ denote the unit ball $\{|x| < 1\}$. Prove that $\log |x| \in H^1(B(0,1))$.

Problem 3: (10 points)

Prove that the continuous functions of compact support are a dense subspace of $L^2(\mathbb{R}^d)$.

Problem 4: (10 points)

There are several senses in which a sequence of bounded operators $\{T_n\}$ can converge to a bounded operator T (in a Hilbert space \mathcal{H}). First, there is convergence in the norm, that is, $\|T_n - T\| \to 0$, as $n \to \infty$. Next, there is a weaker convergence, which happens to be called strong convergence, that requires that $T_n f \to Tf$, as $n \to \infty$, for every vector $f \in \mathcal{H}$. Finally, there is weak convergence that requires $(T_n f, g) \to (Tf, g)$ for every pair of vectors $f, g \in \mathcal{H}$.

- (a) Show by examples that weak convergence does not imply strong convergence, nor does strong convergence imply convergence in norm.
- (b) Show that for any bounded operator T there is a sequence $\{T_n\}$ of bounded operators of finite rank so that $T_n \to T$ strongly as $n \to \infty$.

Problem 5: (10 points)

Let $\mathcal H$ be a Hilbert space. Prove the following variants of the spectral theorem.

- (a) If T_1 and T_2 are two linear symmetric and compact operators on \mathcal{H} that commute (that is, $T_1T_2 = T_2T_1$), show that they can be diagonalized simultaneously. In other words, there exists an orthonormal basis for \mathcal{H} which consists of eigenvectors for both T_1 and T_2 .
- (b) A linear operator on \mathcal{H} is *normal* if $TT^* = T^*T$. Prove that if T is normal and compact, then T can be diagonalized.
- (c) If *U* is unitary, and $U = \lambda I T$, where *T* is compact, then *U* can be diagonalized.

Problem 6: (10 points)

Prove that a normed linear space is complete if and only if every absolutely summable sequence is summable.

Problem 7: (10 points)

Consider the equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} + x - \epsilon x |x| = 0$$

- (a) Find the equation for the conserved energy.
- (b) Find the equilibrium points and the values of ϵ for which they exist.
- (c) There are two qualitatively different phase portraits, for different values of ϵ . CLEARLY sketch and label these phase portraits.
- (d) Show that there exist initial conditions, for any ϵ , for which solutions are periodic.
- (e) For initial data x(0) = a, $\dot{x}(0) = 0$, calculate the first two terms (in ϵa) of the Taylor expansion of the period of the orbit in the limit $\epsilon a \to 0$.

Problem 8: (10 points)

Consider the system

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax + y - xf(x^2 + y^2)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -x + ay - yf(x^2 + y^2)$$

where *a* is real, *f* is continuous, f(0) = 0 and $f(z) \ge z^{1/2}$.

- (a) Show that the origin is the only equilibrium point.
- (b) Study the linear stability of the origin.
- (c) Show that there exists a stable limit cycle if a > 0 (state and use the Poincaré-Bendixson theorem).
- (d) Take the special case with $f(z^2) = z$ for all $z \ge 0$ with a > 0. Find the limit cycle explicitly by solving the system.