Applied Mathematics Preliminary Exam (Spring 2019)

Instructions:

- **1.** All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1 Consider a rigid, flat object, of mass m and length ℓ , attached to a torsional spring of stiffness κ in the presence of wind of speed v (see Fig. 1). The equations of motion are

$$\frac{m\ell^2}{4}\frac{d^2\theta}{dt^2} = -\kappa\theta + \nu c\frac{\ell}{2}\sin(\theta)$$

where c is a drag constant so that vc has units of force. Assume that all constants listed above are positive (but keep in mind that $\theta(t)$ may be negative).

Side view

Figure 1:

(a) Use non-dimensionalization to show that the qualitative behavior of the system is defined by a single non-dimensional parameter.

(b) Show that there is a conserved quantity.

(c) As wind speed v increases from 0, find a critical value of the non-dimensional parameter at which a bifurcation occurs, and identify the type of bifurcation.

(d) Sketch the phase portrait at **i**. a wind speed just below the bifurcation and **ii**. a wind speed just after the bifurcation.

Problem 2 Consider the following predator-prey model:

$$\frac{dx}{dt} = x(x(1-x) - y) \qquad \frac{dy}{dt} = y(x-a)$$

where x is the (positive) non-dimensional population of prey, y is the (positive) non-dimensional population of predators, and a is a (positive) non-dimensional parameter.

- (a) Sketch the null-clines in the first quadrant, $x, y \ge 0$.
- (b) Find and classify all fixed points
- (c) Find and classify all bifurcations that occur as *a* varies (assume a > 0).
- (d) Show that a stable limit cycle exists for some values of *a*.

Problem 3 An *annular* plate with inner and outer radii a < b, respectively, is held at temperature *B* at its outer boundary and satisfies the boundary condition $\frac{\partial u}{\partial r} = A$ at its inner boundary, where *A*, *B* are constants. Find the temperature if it is at a *steady state*.

[Hint: It satisfies the two-dimensional Laplace equation and depends only on *r*. You can also use the fact that the Laplace operator can be expressed in the polar coordinate (r,θ) as: $\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}.$]

Problem 4 Let ω be positive, but *not* an integer multiple of π and consider the following boundary value problem on the unit interval [0, 1]:

$$f'' + \omega^2 f = g, \quad f'(0) = 0 = f'(1).$$

- (a) Find the *Green's function* for this boundary value problem.
- (b) Discuss what happens if we try this with $\omega = 0$?

Problem 5 Let *A* be a symmetric matrix and let λ_0 be a simple (i.e. multiplicity one) eigenvalue of *A* with corresponding eigenvector \mathbf{v}_0 . Derive an expression for the eigenvalue, λ , up to order ϵ in the limit of small ϵ to the problem

$$A\mathbf{v} + \epsilon \mathbf{F}(\mathbf{v}) = \lambda \mathbf{v}$$

that is λ_0 at leading order.

Problem 6 The van der Pol oscillator,

$$\epsilon \dot{u} = v + u - \frac{u^3}{3},$$
$$\dot{v} = -u,$$

exhibits periodic relaxation oscillations. The oscillation exhibits two time scales (a fast and slow time scale) for small ϵ .

Let $f(u) = u^3/3 - u$. The following information about f may be helpful:

$$f'(\pm 1) = 0$$

 $f(\pm 1) = \mp 2/3$
 $f(\pm 2) = \pm 2/3$

- (a) Draw the nullclines in the phase plane (uv-plane), sketch the limit cycle for small ϵ , and label the regions of fast and slow dynamics on the limit cycle.
- (b) Compute the period of the oscillation at leading order as $\epsilon \rightarrow 0$.

End of the exam.