# Graduate Group in Applied Mathematics University of California, Davis

## **Preliminary Exam**

January 4, 2008

#### **Instructions:**

- This exam has 4 pages (8 problems) and is closed book.
- The first 6 problems cover Analysis and the last 2 problems cover ODEs.
- Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- Use separate sheets for the solution of each problem.

Problem 1: (10 points)

Define  $f_n: [0,1] \to \mathbb{R}$  by

$$f_n(x) = (-1)^n x^n (1-x).$$

- (a) Show that  $\sum_{n=0}^{\infty} f_n$  converges uniformly on [0,1].
- (b) Show that  $\sum_{n=0}^{\infty} |f_n|$  converges pointwise on [0,1] but not uniformly.

Problem 2: (10 points)

Consider  $X = \mathbb{R}^2$  equipped with the Euclidean metric,

$$e(x, y) = [(x_1 - y_1)^2 + (x_2 - y_2)^2]^{1/2},$$

where  $x = (x_1, x_2) \in \mathbb{R}^2$ ,  $y = (y_1, y_2) \in \mathbb{R}^2$ . Define  $d: X \times X \to \mathbb{R}$  by

$$d(x,y) = \begin{cases} e(x,y) & \text{if } x, y \text{ lie on the same ray through the origin,} \\ e(x,0) + e(0,y) & \text{otherwise.} \end{cases}$$

Here, we say that x, y lie on the same ray through the origin if  $x = \lambda y$  for some positive real number  $\lambda > 0$ .

- (a) Prove that (X, d) is a metric space.
- (b) Give an example of a set that is open in (X, d) but not open in (X, e).

1

#### **Problem 3:** (10 points)

Suppose that  $\mathcal{M}$  is a (nonzero) closed linear subspace of a Hilbert space  $\mathcal{H}$  and  $\phi: \mathcal{M} \to \mathbb{C}$  is a bounded linear functional on  $\mathcal{M}$ . Prove that there is a unique extension of  $\phi$  to a bounded linear function on  $\mathcal{H}$  with the same norm.

### Problem 4: (10 points)

Suppose that  $A: \mathcal{H} \to \mathcal{H}$  is a bounded linear operator on a (complex) Hilbert space  $\mathcal{H}$  with spectrum  $\sigma(A) \subset \mathbb{C}$  and resolvent set  $\rho(A) = \mathbb{C} \setminus \sigma(A)$ . For  $\mu \in \rho(A)$ , let

$$R(\mu, A) = (\mu I - A)^{-1}$$

denote the resolvent operator of A.

(a) If  $\mu \in \rho(A)$  and

$$|\nu - \mu| < \frac{1}{\|R(\mu, A)\|},$$

prove that  $v \in \rho(A)$  and

$$R(\nu, A) = [I - (\mu - \nu)R(\mu, A)]^{-1}R(\mu, A).$$

(b) If  $\mu \in \rho(A)$ , prove that

$$||R(\mu, A)|| \ge \frac{1}{d(\mu, \sigma(A))}$$

where

$$d(\mu, \sigma(A)) = \inf_{\lambda \in \sigma(A)} |\mu - \lambda|$$

is the distance of  $\mu$  from the spectrum of A.

#### **Problem 5:** (10 points)

Let  $1 \le p < \infty$  and let I = (-1, 1) denote the open interval in  $\mathbb{R}$ . Find the values of  $\alpha$  as a function of p for which the function  $|x|^{\alpha} \in W^{1,p}(I)$ .

### Problem 6: (10 points)

Let  $\Omega = \{x \in \mathbb{R}^3 : |x| < 1\}$  denote the unit ball in  $\mathbb{R}^3$ . Suppose that the sequences  $\{f_k\}$  in  $W^{1,4}(\Omega)$  and that  $\{\vec{g}_k\}$  in  $W^{1,4}(\Omega;\mathbb{R}^3)$ . Suppose also that there exist functions  $f \in W^{1,4}(\Omega)$  and  $\vec{g}$  in  $W^{1,4}(\Omega;\mathbb{R}^3)$ , such that we have the weak convergence

$$f_k \to f \text{ in } W^{1,4}(\Omega),$$
  
 $\vec{g}_k \to \vec{g} \text{ in } W^{1,4}(\Omega; \mathbb{R}^3).$ 

Show that there are subsequences  $\{f_{k_j}\}$  and  $\{\vec{g}_{k_j}\}$  such that we have the weak convergence

$$\vec{D}f_{k_j} \cdot \operatorname{curl} \vec{g}_{k_j} \to \vec{D}f \cdot \operatorname{curl} \vec{g}$$
 in  $H^{-1}(\Omega)$ .

**Notation.** Here f is a scalar function and  $\vec{g}=(g_1,g_2,g_3)$  are three-dimensional vector-valued function.  $\vec{D}$  denotes the three-dimensional gradient  $(\partial_{x_1},\partial_{x_2},\partial_{x_3})$  and  $\operatorname{curl} \vec{g}=(\partial_{x_1},\partial_{x_2},\partial_{x_3})\times \vec{g}$ 

As customary, we use  $H^{-1}(\Omega)$  to denote the dual space of the Hilbert space  $H^1_0(\Omega)$  consisting of those functions in  $H^1(\Omega)$  which vanish on the boundary (in the sense of trace). Two useful identities are that

$$\operatorname{curl}(\vec{D}f) = 0$$
 for any scalar function  $f$ ,  $\operatorname{div}(\operatorname{curl}\vec{w}) = 0$  for any vector function  $\vec{w}$ ,

where  $\operatorname{div} \vec{F} = \partial_{x_1} F_1 + \partial_{x_2} F_2 + \partial_{x_3} F_3$  denotes the usual divergence of a vector field  $\vec{F} = (F_1, F_2, F_3)$ .

**Hint.** Test  $\vec{D}f_{k_j} \cdot \text{curl } \vec{g}_{k_j}$  with a function  $\psi \in H^1_0(\Omega)$  and use integration by parts to argue the weak convergence.

#### Problem 7: (14 points)

The rotating bead on a hoop is a Hamiltonian system where

$$H(\theta, \Omega) = \frac{\Omega^2}{2} - \left( \frac{g}{R} \cos(\theta) - \frac{\omega^2}{4} \cos(2\theta) \right)$$

where  $\theta$  is the angle that the bead makes from the vertical measured from "straight down,"  $\Omega$  is the angular velocity of the bead,  $\omega$  is the angular velocity of the hoop, g is the acceleration of gravity, and R is the radius of the hoop. Recall that the Hamiltonian is conserved (it is the total energy) and the dynamics are given by

$$\dot{\theta} = \frac{\partial H}{\partial \Omega}, \quad \dot{\Omega} = -\frac{\partial H}{\partial \theta}.$$

- (a) Write down the dynamical system.
- (b) When the hoop is not rotating, this is exactly equivalent to the classical pendulum. Non-dimensionalize this system using a natural time scale associated with the classical pendulum. This will leave you with one parameter, call it  $\lambda$  which we shall use to study bifurcations.
- (c) Find the value of  $\lambda_c$  at which a bifurcation occurs.
- (d) Sketch the phase portrait for  $\lambda$  greater than the bifurcation value and less than the bifurcation value.
- (e) Find the fixed points and classify their stability.
- (f) Find the frequency of oscillation about either of the two neutrally stable fixed points for  $\lambda > \lambda_c$ .
- (g) Sketch the phase portrait for  $\lambda>\lambda_c$  if we add a damping term to the equation, i.e.,  $\dot{\Omega}=-\nu\Omega$  with  $\nu>0$ .

## Problem 8: (6 points)

Estimate the period of the limit cycle in the system

$$\ddot{x} + k\left(x^2 - 4\right)\dot{x} + x = 1$$

for  $k\gg 1$ . There are different ways to do this. One way to start involves recognizing the Lienard transformation, i.e. first write the system as

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[ \dot{x} + k \left( \frac{x^3}{3} - 4x \right) \right] + x = 1.$$

Second, define the quantity in square brackets to be ky. Third, write down the dynamical system for  $\dot{x}$  and  $\dot{y}$ . From here you can find an approximate expression for the limit cycle and integrate the resulting equation to estimate the period.