Graduate Group in Applied Mathematics
 University of California, Davis

 Preliminary Exam

 Preliminary Exam}
(24 September 2003)

This exam has 3 numbered pages and is closed book. Please provide complete arguments. State or cite by name any major theorems you use. The Analysis portion of this exam is Problems 1-6. The ODE portion is Problems $7 \& 8$.

Problem 1. Recall the definition of the Gaussian distribution with variance $\sigma^{2}>0$:

$$
p_{\sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right), x \in \mathbb{R} .
$$

For $f \in L^{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$, define

$$
(T f)(x)=\sqrt{2} \int_{-\infty}^{+\infty} p_{1 / 2}(y) f(\sqrt{2}(x-y)) d y
$$

a) Prove that p_{1} is a fixed point of T.
b) Prove that for all $c>0$, there is exactly one fixed point of T in $L^{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$, say f, such that $\|f\|_{L^{1}}=c$.
c) Let $g \in L^{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$ be a non-negative function. Show that the sequence $T^{n} g$ converges in $L^{1}(\mathbb{R})$ as $n \rightarrow \infty$, and find its limit.

Problem 2. Let $\left(t_{n}\right)_{n \geq 1}$ be a sequence of non-negative real numbers such that $\sum_{n \geq 1} t_{n}^{3 / 2}=1$. Let $\left(a_{n}\right)$ be a sequence of complex numbers satisfying

$$
\begin{equation*}
\sum_{n \geq 1}\left|a_{n}\right|^{3}<+\infty . \tag{1}
\end{equation*}
$$

Define $f_{n} \in C([0,1])$, by

$$
f_{n}(x)=\sum_{m=1}^{n} t_{m} a_{m} \sin (m \pi x)
$$

Prove that the set

$$
A=\left\{f_{n} \mid n \geq 1\right\}
$$

is precompact in $C([0,1])$ with the supremum norm.

Problem 3.

a) Let X^{-1} be the distributional limit, as $\epsilon \rightarrow 0$, of the sequence of functions

$$
F_{\epsilon}(x)= \begin{cases}\frac{1}{x}, & |x|>\epsilon \\ 0, & |x|<\epsilon\end{cases}
$$

Show that X^{-1} is the distributional derivative of the function $f(x)=\log |x|$.
b) Show that the distributional limit, as $\epsilon \rightarrow 0$, of the following sequence

$$
f_{\epsilon}(x)=\frac{1}{x-i \epsilon}, \quad \epsilon>0
$$

is $X^{-1}+\pi i \delta$.

Problem 4. Let $h>0$, and consider the following differential-difference initial-value problem, where $u(x, t)$ and $f(x)$ are 2π-periodic functions of x :

$$
\begin{aligned}
& u_{t}(x, t)=\frac{u(x+h, t)-2 u(x, t)+u(x-h, t)}{h^{2}} \\
& u(x, 0)=f(x)
\end{aligned}
$$

a) (10 points) Use Fourier series to solve for $u(x, t)$ when $f(x)$ is square-integrable.
b) (5 points) How does the smoothness of $u(\cdot, t)$ for $t>0$ compare with the smoothness of $f(\cdot)$?
c) (5 points) Discuss briefly what happens to your solution in the limit $h \rightarrow 0$.

Problem 5.

a) (5 points) Define "orthogonal projection on a Hilbert space".
b) (10 points) Suppose that P and Q are orthogonal projections with ranges \mathcal{M} and \mathcal{N}, respectively. If $P Q=Q P$, prove that $R=P+Q-P Q$ is an orthogonal projection. What is its range?

Problem 6.

a) (5 points) Define strong and weak convergence in a Hilbert space.
b) (5 points) Suppose that $\left(x_{n}\right)_{n=1}^{\infty}$ is an orthogonal sequence in a Hilbert space, meaning that x_{n} is orthogonal to x_{m} for $n \neq m$. Prove that the following statements are equivalent:
(i) $\quad \sum_{n=1}^{\infty} x_{n}$ converges strongly;
(ii) $\quad \sum_{n=1}^{\infty} x_{n}$ converges weakly;
(iii) $\quad \sum_{n=1}^{\infty}\left\|x_{n}\right\|^{2}<\infty$.
c) (5 points) Give an example to show that if the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is not orthogonal, then $\sum_{n=1}^{\infty} x_{n}$ may converge weakly but not strongly.

Problem 7. Consider the system

$$
\begin{aligned}
\dot{q} & =4 p^{3}-4 p q \\
\dot{p} & =2 p^{2}-3 q^{2}
\end{aligned}
$$

a) Show that the function $H(q, p)=p^{4}-2 p^{2} q+q^{3}$ is a conserved quantity for this system.
b) Compute the linearization of the system at the fixed point

$$
\left(q^{*}, p^{*}\right)=\left(\frac{2}{3}, \sqrt{\frac{2}{3}}\right)
$$

What type of fixed point is this? Sketch the behavior of the full system in a small neighborhood of the fixed point.

Problem 8. Consider the one-dimensional system

$$
\dot{x}=x+\frac{r x}{1+x^{2}}
$$

a) Compute the location of all fixed points as a function of $r \in \mathbb{R}$.
b) Plot the phase portrait when $r=-2$.
c) Plot a bifurcation diagram for the system. At what values of x and r does the bifurcation occur? What type of bifurcation is it?
d) Describe what would happen to the system's solution if it starts at $x=1 / 2$ and $r=-2$, and then r is very slowly increased? Assume that the system dynamics are much faster than the change in r.

