Applied Mathematics Preliminary Exam (Spring 2016)

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
2. Use separate sheets for the solution of each problem.

Problem 1 Consider the one-dimensional dynamical system

$$
\frac{d x}{d t}=\mu x-2 x^{2}+x^{3}
$$

where $\mu \in \mathbb{R}$ is a parameter and $x(t) \in \mathbb{R}$.
(a) Determine the equilibria of the system and for what ranges of μ they exist.
(b) Determine the stability of the equilibria in (a).
(c) Sketch the bifurcation diagram for this system, using a solid line to denote a branch of stable equilibria and a dashed line to denote a branch of unstable equilibria. Classify the bifurcations that occur as μ increases from $-\infty$ to ∞.

Problem 2 (a) Show that the second order ODE

$$
\frac{d^{2} x}{d t^{2}}+\left(\frac{d x}{d t}\right)^{2}+x=0
$$

can be put in the Hamiltonian form

$$
\begin{equation*}
\frac{d x}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial x} \tag{1}
\end{equation*}
$$

by defining

$$
p=e^{2 x} \frac{d x}{d t}
$$

What is $H(x, p)$?
(b) Sketch the phase plane of the resulting Hamiltonian system (1).

Problem 3 Suppose a perfectly flexible rope of length $2 a$ with uniform density ρ hangs under gravity from two fixed points $(-b, 0)$ and $(b, 0)$ in the $x y$-plane where $b<a$ and the gravity points downward (i.e., the negative y direction). Find the shape of this rope, $y=y(x)$, that minimizes the potential energy

$$
V=\rho g \int_{-b}^{b} y \sqrt{1+\left(y^{\prime}\right)^{2}} \mathrm{~d} x .
$$

[Hint: The constraint is of course the arclength of the rope must be $2 a$.]

Problem 4 Let $f(\theta)$ be the 2π-periodic function such that $f(\theta)=\mathrm{e}^{\theta}$ for $-\pi<\theta \leq \pi$, and let $\sum_{n=-\infty}^{\infty} c_{n} \mathrm{e}^{\mathrm{i} n \theta}$ be its Fourier series; thus $\mathrm{e}^{\theta}=\sum_{n=-\infty}^{\infty} c_{n} \mathrm{e}^{\mathrm{i} n \theta}$ for $|\theta|<\pi$.
(a) Compute $c_{n}, n \in \mathbb{Z}$, explicitly.
(b) If we formally differentiate this equation, we obtain $\mathrm{e}^{\theta}=\sum_{n=-\infty}^{\infty} \mathrm{i} n c_{n} \mathrm{e}^{\mathrm{i} n \theta}$. But then, $c_{n}=\mathrm{i} n c_{n}$ or ($1-\mathrm{i} n$) $c_{n}=0$, so $c_{n}=0$ for all n. This is obviously wrong; where is the mistake?

Problem 5 Find a one-term approximation, that is valid for long time scales, of the solution to the following differential equation

$$
\varepsilon \frac{d^{2} x}{d t^{2}}+\varepsilon \frac{d x}{d t}+x=\cos (t)
$$

for $t>0$, with initial conditions $x(0)=0$ and $\left.\frac{d x}{d t}\right|_{t=0}=0$.

Figure 1: This is a numerical solution of the equation with $\varepsilon=0.01$ (gray), plotted with my solution for the one term approximation, valid for long time scales (black).

Problem 6 Friedrichs' (1942) model problem for a boundary layer in a viscous fluid is

$$
\varepsilon \frac{d^{2} y}{d x^{2}}=a-\frac{d y}{d x}
$$

for $0<x<1$ and $y(0)=0, y(1)=1$, and a is a given positive constant.
After finding the first term of the inner and outer expansions, derive a composite expansion for the solution to this problem.

