Applied Mathematics Preliminary Exam (Spring 2016)

Instructions:

- **1.** All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1 Consider the one-dimensional dynamical system

$$\frac{dx}{dt} = \mu x - 2x^2 + x^3$$

where $\mu \in \mathbb{R}$ is a parameter and $x(t) \in \mathbb{R}$.

(a) Determine the equilibria of the system and for what ranges of μ they exist.

(b) Determine the stability of the equilibria in (a).

(c) Sketch the bifurcation diagram for this system, using a solid line to denote a branch of stable equilibria and a dashed line to denote a branch of unstable equilibria. Classify the bifurcations that occur as μ increases from $-\infty$ to ∞ .

Problem 2 (a) Show that the second order ODE

$$\frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^2 + x = 0$$

can be put in the Hamiltonian form

$$\frac{dx}{dt} = \frac{\partial H}{\partial p}, \qquad \frac{dp}{dt} = -\frac{\partial H}{\partial x} \tag{1}$$

by defining

$$p = e^{2x} \frac{dx}{dt}$$

What is H(x, p)?

(b) Sketch the phase plane of the resulting Hamiltonian system (1).

Problem 3 Suppose a perfectly flexible rope of length 2*a* with uniform density ρ hangs under gravity from two fixed points (-*b*,0) and (*b*,0) in the *xy*-plane where *b* < *a* and the gravity points downward (i.e., the negative *y* direction). Find the shape of this rope, y = y(x), that minimizes the potential energy

$$V = \rho g \int_{-b}^{b} y \sqrt{1 + (y')^2} \, \mathrm{d}x.$$

[Hint: The constraint is of course the arclength of the rope must be 2a.]

Problem 4 Let $f(\theta)$ be the 2π -periodic function such that $f(\theta) = e^{\theta}$ for $-\pi < \theta \le \pi$, and let $\sum_{n=-\infty}^{\infty} c_n e^{in\theta}$ be its Fourier series; thus $e^{\theta} = \sum_{n=-\infty}^{\infty} c_n e^{in\theta}$ for $|\theta| < \pi$.

- (a) Compute $c_n, n \in \mathbb{Z}$, explicitly.
- (b) If we formally differentiate this equation, we obtain $e^{\theta} = \sum_{n=-\infty}^{\infty} inc_n e^{in\theta}$. But then, $c_n = inc_n$ or $(1-in)c_n = 0$, so $c_n = 0$ for all *n*. This is obviously wrong; where is the mistake?

Problem 5 Find a one-term approximation, that is valid for long time scales, of the solution to the following differential equation

$$\varepsilon \frac{d^2 x}{dt^2} + \varepsilon \frac{dx}{dt} + x = \cos(t)$$

for t > 0, with initial conditions x(0) = 0 and $\frac{dx}{dt}\Big|_{t=0} = 0$.

Figure 1: This is a numerical solution of the equation with $\varepsilon = 0.01$ (gray), plotted with my solution for the one term approximation, valid for long time scales (black).

Problem 6 Friedrichs' (1942) model problem for a boundary layer in a viscous fluid is

$$\varepsilon \frac{d^2 y}{dx^2} = a - \frac{dy}{dx}$$

for 0 < x < 1 and y(0) = 0, y(1) = 1, and *a* is a given positive constant.

After finding the first term of the inner and outer expansions, derive a composite expansion for the solution to this problem.