Applied Mathematics Preliminary Exam (Fall 2016)

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
2. Use separate sheets for the solution of each problem.

Problem 1 The SIR model is a simple and sometimes accurate way to describe the spread of a disease in a population. One variant of the model is given by the following three equations:

$$
\begin{align*}
\frac{d S}{d t} & =a(I+R+S)-a S-b S I \\
\frac{d I}{d t} & =b S I-a I-c I \\
\frac{d R}{d t} & =c I-a R \tag{1}
\end{align*}
$$

where S is the number of susceptible individuals, I the number of infected individuals and R the number of recovered individuals in the population and t is time.
The parameters are defined as follows:
a is the birth rate and also the death rate. Since these rates are equal, the population maintains a constant size, $R+I+S=N$, where N is a constant.
b is the transmission likelihood. When a susceptible and infected individual meet, the susceptible becomes infected with some probability. The parameter b defines the rate that susceptible and infected individuals meet and the infection is transmitted.
c is the recovery rate. An infected individual recovers at this rate, and then is immune to the disease.
a. Using a and N to define your time and population scales, respectively, non-dimensionalize the three differential equations.

Given the appropriate non-dimensionalization, and using the constraint that the population maintains a constant size, the equations become

$$
\begin{align*}
& \frac{d x}{d T}=1-x-\alpha x y \\
& \frac{d y}{d T}=\alpha x y-(1+\beta) y \tag{2}
\end{align*}
$$

where x is the probability that an individual is susceptible, y is the probability that an individual is infected, and the probability that an individual is resistant (z) can be determined from the constraint $x+y+z=1$.
b. Find all fixed points $\left(x^{*}, y^{*}\right)$ and determine their stability for all combinations of $\alpha, \beta>0$.
c. Suppose that $\beta=1$. A bifurcation occurs as α changes. Classify this bifurcation, and sketch a phase portrait before and after the bifurcation.

Problem 2 Consider the following mechanical system.

Figure 1: Mechanical system for problem 2.
A block, of mass m, sits on a conveyer belt moving at velocity ν_{0}. The mass is attached to a wall with a linear spring of stiffness k. The position of the mass, x, as a function of time, t, obeys the following differential equation

$$
m \frac{d^{2} x}{d t^{2}}=-k x-f(\dot{s})
$$

where f is the frictional force that the conveyer belt applies to the block and \dot{s} is the velocity of the block relative to the belt, $\dot{s}=\frac{d x}{d t}-v_{0}$. This equation can be non-dimensionalized to

$$
\begin{equation*}
\frac{d^{2} X}{d T^{2}}=-X-F\left(\frac{d X}{d T}-V\right) \tag{3}
\end{equation*}
$$

Suppose that $V=1$. Also, suppose that the friction force as a function of relative speed has the following form

$$
F(x)=\left\{\begin{array}{ccc}
1+a x & : & x>0 \tag{4}\\
-1+a x & : & x<0
\end{array}\right.
$$

a. Perhaps the simplest model of friction is Coulomb friction, which is Eq. 4 with $a=0$. Show that linearization predicts that the unique fixed point, $X=-F(-1)=1, d X / d T=0$, is a center and explain why this is, in fact, a true center.
b. Show that, as a varies, the fixed point goes from a stable to an unstable spiral (assuming $|a|<2$).
c. It turns out that when the fixed point becomes unstable, a limit cycle appears. This is a Hopf bifurcation. Is it a subcritical, supercritical or degenerate Hopf? Briefly (in a sentence or two) explain.

Problem 3 Define a functional $J: X \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
J(u) & =\int_{0}^{\pi / 4}\left\{\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} u^{4}+u^{2}\right\} d x \\
X & =\left\{u \in C^{2}([0, \pi / 4]): u(0)=0, u(\pi / 4)=1\right\}
\end{aligned}
$$

a. What is the Euler-Lagrange equation for J ?
b. Find the function $u \in X$ that minimizes J.

Hint: It turns out that $u^{\prime}(0)=1$, which may be helpful in evaluating the constants of integration.

Problem 4 Consider the boundary value problem (BVP)

$$
\begin{aligned}
& u^{\prime \prime}+u=f(x) \quad 0<x<2 \pi \\
& u(0)=0, \quad u(2 \pi)=0
\end{aligned}
$$

for $u \in C^{2}([0,2 \pi])$, where $f \in C([0,2 \pi])$ is a given function.
a. Show that a necessary condition for the BVP to have a solution is that

$$
\int_{0}^{2 \pi} f(x) \sin x d x=0
$$

b. If a solution of the BVP exists, show that there is a unique solution u such that

$$
\int_{0}^{2 \pi} u(x) \sin x d x=0
$$

c. Write down the set of equations satisfied by the generalized Green's function $G(x, \xi)$ for this BVP. (You don't have to solve for G.)
d. Write down the BVP and orthogonality condition that are satisfied by the function

$$
u(x)=\int_{0}^{2 \pi} G(x, \xi) f(\xi) d \xi
$$

Problem 5 In the relativistic mechanics of planetary motion around the Sun, one comes across the problem

$$
\frac{d^{2} u}{d \theta^{2}}+u=\alpha\left(1+\epsilon u^{2}\right)
$$

where $\alpha>0$. Here, $u=1 / r$, where r is the normalized radial distance of the planet from the sun, and θ is the angular coordinate in the orbital plane. Find a first-term approximation of the solution u that is valid for large θ for small ϵ that satisfies the initial conditions

$$
\begin{aligned}
u(0) & =1 \\
u^{\prime}(0) & =0 .
\end{aligned}
$$

Problem 6 Find the leading order composite expansion for small ϵ for the problem

$$
\begin{gathered}
\epsilon^{2} y^{\prime \prime}+\epsilon \frac{3}{2} x y^{\prime}-y=-x, \quad \text { for } 0<x<1 \\
y(0)=1, \\
y(1)=2 .
\end{gathered}
$$

